《钢结构设计》教学设计样例说明

课题	门式刚架轻型房屋结构檩条设计的有效截面法	课时	1
专 业	土木工程专业	授课教师	XXX
教学目标	理解冷弯薄壁型钢有效截面法,掌握门式刚架车计算。	· 经型房屋结构的檩条	· 居曲后强度设计
教学重点	標条屈曲后强度设计计算		
教学难点	有效截面法的基本设计思想		
教学方法	讲授法、直观演示法、探究法、讨论法		
教学资源	PPT 课件、课堂实验、板书等		
所选教材	宋高丽 主编,《钢结构设计》,中国建筑工业出	版社 2019 年出版	
教学过程			
教学步骤	教师活动	学生活动	设计意图
环节 1 课堂实验 示,情境导入 (5分钟)	实验:教师选用一张常见的 A4 纸,把纸片卷成圆形截面构件形状,只需稍微合拢纸片,构件厚度基本上就是单张纸的厚度。纸质构件底部与讲台桌面相接触,用手掌按住构件顶部,手掌逐步加大往下所施加的压力,提醒学生注意观察纸质构件所发生的变化。 实验 纸质构件受压前后图 提问:对比上述实验,对实验前后构件发生的变化现象进行对比? 在学生讨论基础上,教师总结:刚才的演示实验	学生各抒己见 预设: 学生回答:实验 发生后,纸质构件外 表面不再保持平整 光滑,逐步出现凹凸 不平的现象。	学生对局部 稳定有一个感官 体会,加深学生对 局部稳定概念的 认识。

环节 2 阐明所学内 容的意义 (2 分钟)	实际上是以纸代替钢材,模拟了钢结构构件发生局部 失稳的现象。这节课我们主要学习钢结构构件发生局 部失稳以后的设计计算。 教师指出钢结构构件发生局部失稳以后,并不意 味着结构构件承载力的丧失,但结构构件承载力会受 到影响。 我国钢铁年产量已连续多年位居世界第一 , 随着政府和社会对 绿色建筑和装配式建筑 的倡导,钢 结构应用愈发广泛,钢结构局部稳定对于工程的影响 也愈显重要。	学生回顾已学 钢结构的特点。	引导学生联 系已学知识,结合 思政融入 ,学生既 为国家强大的工 业生产力感到自 豪,也感知学习钢 结构局部稳定的 重要性。
环节 3 局部稳定的 本质 (5 分钟)	教师运用PPT课件展示钢结构构件不同板件发生局部失稳的形式。教师板书:局部稳定。 翼缘局部失稳 腹板局部失稳 腹板局部失稳 提问 1: 以往我们学过,强度的本质是应力问题,结合试验与 PPT 课件所见的钢结构构件的局部失稳 形式,稳定的本质属于什么问题? 提问 2: 在已学的《钢结构设计原理》课程中,如何防止钢结构构件发生局部失稳?	学生带着问题 思考、探讨。 预设: 学生回答1:稳 定的本质是变形问题。 学生回答 2:通 过限制钢结构板件 的宽厚比的此钢结构件的宽厚比员上	引导学生温 故知新,训练学生 思维探究能力,加 强了课程群间的 联系。
环节 4 有效截面法 的引出 (5 分钟)	教师指出,安全可靠,经济合理是结构设计的基本原则,如何在钢结构构件局部稳定方面贯彻上述设计原则? 提问 1: 既然钢结构构件发生局部失稳以后,并不意味着结构构件承载力的丧失,从经济合理角度出发,是否应该利用局部失稳以后的构件承载力? 提问 2: 如何利用局部失稳以后的构件承载力? 教师板书: 屈曲后强度的利用 稍作停顿后,教师指出这就涉及到我们今天学习的有效截面法。	学生带着问题 思考、探讨。 预设: 学生回答1:应 该利用局部失稳以 后的构件承载力。 学生针对提问2 进行思考。	思政融入,引导学生建立正确的设计观。 通过课堂演示实验、局部稳定的本质、设计原则等为有效截面法做方充分的铺垫,利于学生知其所以然,加强了知识的前后联系。
环节 5 有效截面法 (12 分钟)	教师指出,钢构件承载力与构件的物理参数(例如强度)、几何参数(例如面积)有关。 提问1:钢构件发生局部失稳,承载力有所下降,如何在承载力计算中得到体现? 教师指出,在承载力计算中,相同条件下,若仅对构件的截面面积进行折减,构件相应的承载力计算值会减小,局部失稳对钢构件承载力的影响也就得到了体现。对构件的截面面积进行折减,一般可通过折减组成构件截面的板件宽度来实现,这就是有效截面法的基本设计思想。 教师运用 PPT 课件,展示有效截面法的基本计算	学生带着问题思考、探讨。 预设: 引发学生针对提问1进行思考。 学生回答2:板件受拉区对应的有效宽度系数大小为1。	对有效截面 法的基本设计思想进行归纳总结, 利于学生对有效 截面法的理解,为 工程应用做好铺垫。 思政融入, 突出中国科学家的贡献,增强

	过程,并板书体现有效截面法设计思想的基础计算式: b _e =ρb _c 。 教师指出,上式中,ρ是板件有效宽度系数,其值不大于 1。ρ的取值与构件的物理参数、几何参数有关,在ρ的计算过程中,同学们会发现存在一个班组约束系数,该系数是中国科学家提出的,并被中国规范吸纳,该系数充分反映了相邻板件之间的关系,有利于有效宽度系数的计算。 提问 2:上式中,b _c 是表示板件受压区宽度,那么对于板件受拉区而言,其对应的有效宽度系数应是多大?		学生的民族自豪感。引导学生树立正确的科学分析方法。建立对学习现行规范的认识。 提问2有利于学生从计算角度加深对有效截面法计算范围的理解。
环节 6 例题讲解 (7 分钟)	教师运用 PPT 课件与板书相结合的方式,讲解檩条屈曲后强度设计计算例题。注重启发学生形成解题思路。 提问: 题目求解的关键点是什么?如何达到求解目标?	学生带着问题 思考、探讨。	以例题巩固 本次课程的主要 学习要点,达到教 学目标。
环节 7 有效截面接强与直接的对比(5分钟)	提问1:通过上述学习,同学们对有效截面法的总体感受怎样,其计算过程比较简单还是比较复杂? 提问2:同学们思考并讨论一下,对于板件屈曲后强度的利用,是否存在其他的方法? 提问3:为同学们作点提示,有效截面法的基本设计思想是折减组成构件截面的板件宽度,钢构件承载力与截面尺寸有关外,还与构件强度有关,既然我们觉得折减板件宽度比较复杂,能否不折减板件宽度,仅折减构件强度达到同样的目的? 教师指出,在折减构件强度设计思想指导下,科学研究者提出了直接强度法。弹性屈曲应力是直接强度法中的重要计算参数,利用如今计算机技术充分发展的有利条件,钢构件弹性屈曲应力计算相对简单,在此基础上,与有效截面法相比,直接强度法相对简单,在此基础上,与有效截面法相比,直接强度法相对简单,适用范围广泛。不过直接强度法提出时间不长,有待于完善,感兴趣的同学可以在这方面做出贡献。	预设: 学生回答 1: 计算过程较为繁琐。 引发学生针对提问2进行思考和讨论。 学生回答3: 应该可以。	思政融入 1, 引导学生开 拓思维,用发展的 观点解决科学问 题。 思政融入 2, 培养学生求 真创新精神,激发 学生的专业热忱。
环节 7 总结归纳 (2 分钟)	从经济合理的设计原则出发,我们在设计中需利用钢构件的屈曲后强度。为此,现行规范推荐了有效截面法考虑屈曲后强度。 有效截面法的基本设计思想是折减组成构件截面的板件宽度。随着科学的发展,人们又提出了将折减构件强度作为出发点的直接强度法,该方法仍有待于完善与发展。	认真思考 总结归纳	加强学生对 已学知识的掌握 和理解。
环节 8 拓展提高 (2 分钟)	请同学们结合课堂学习,查找文献资料,对比分析直接强度法与有效宽度法的设计计算特点,提出直接强度法有待完善之处。	认真研讨 总结分析	引申性研究, 学生能说出其中 一个方面即可。
板书	门式刚架轻型房屋结构檩条的 1、稳定:局部稳定、整体稳定 2、屈曲后强度的利用	口 设计的有效截面法	1 / 2

	3 、有效截面法板件宽度的折减 : b_e = $ ho b_c$	
课后作业	省级线上一流课程《钢结构设计》线上作业 3-6	
教学反思	1、综合运用课堂实验演示、PPT课件、板书等多种教学手段打破传统教学壁垒,实现知识可视化,巧妙地解决了教学重点和难点,并提高学生学习兴趣;	
	2、改变传统课堂中教师的"一言堂"现象,通过任务驱动、提问、集中讨论等培养学生思辨能力、探究能力,帮助学生学会学习、学会表达等;	
	3、课中有多处思政融入,课后利用作业巩固学习成果,并可继续用网络平台给学生补充知识。	

课程负责人: 罗洪光 (签字)

附教学活动图片:

附图 1 教师向学生展示演示实验的实验结果

附图 2 教师引导学生思考演示实验的实验现象

附图 3 教师引导学生描述演示实验的实验现象

附图 4 学生之间的学习讨论

附图 5 教师引导学生思索钢构件的屈曲后强度的利用

附图 6 教师引导学生探讨有效截面法的设计思想